The Netherlands


SNAPSHOT: Human spaceflight

Cumulative human spaceflight, 1961–March 18, 2024Cumulative human spaceflight, 1961–March 18, 2024

As of mid-March, 685 astronauts have reached at least 80 kilometers above the Earth’s surface. This total includes 86 private astronauts, 22 times as many as there were two decades ago.

Read More


2020 TSRQ3 – Infrastructure: Human Spaceflight

Since Yuri Gagarin’s orbital flight around the Earth in April 1961, humans in pioneering new technologies and pushing the limits of what’s considered possible. This year ushered in a new era of human spaceflight when SpaceX became the first . . .

Read More


2019 TSRQ3 – Education STEM Proficiency

The science, technology, engineering, and mathematics (STEM) workforce is at the core of the space industry—from the mathematicians and astronomers who analyze space to the engineers who design and build the launch vehicles that get us there. This workforce is enabled . . .

Read More


2014 – Military Communications

Global, dedicated, and secure communications networks are vital to governments, militaries, and agencies around the world. Increased demand for capacity—particularly secure connectivity using non-commercial frequency bands—continued to drive deployment of dedicated military communications satellite systems. The U.S. military bought significant capacity from commercial operators such as Intelsat and SES in 2014. However, the way the military buys the bandwidth has been criticized by commercial satellite communications services as expensive and outdated.

Read More


2014 – Additional Country Space Budgets

Around the globe, many smaller nations—whether in terms of economy or population size—are investing in space projects or programs. The exhibit below shows the most recent available annual budget for civil space activities in a number of selected space states.

Read More


2013 – Military Communications

Dedicated and secure communications links are vital to defense agencies around the world. Increasing demand for capacity—particularly secure connectivity using non-commercial frequency bands—has driven the deployment of dedicated military communications satellites. The U.S. military buys a significant portion of its capacity from commercial operators such as Intelsat and SES. However, the United States also relies on military-specific systems such as the Wideband Global SATCOM (WGS) program, supplying dedicated communications to U.S. and allied military forces around the globe.

Read More


2013 – Galileo

A joint initiative between the European Commission (EC) and ESA, the Galileo constellation will consist of ## operational satellites in MEO. Europe launched ## in-orbit validation (IOV) spacecraft between 2011 and 2012 for positioning tests and technology validation. In November 2013, the IOV network enabled Galileo to successfully track a test aircraft flying over the Netherlands, the first time that the European agency has been able to track a moving aircraft using only the Galileo system. Initially, Galileo’s Open Service—freely accessibly PNT signals for mass-market devices such as smartphones and automobile navigation systems—is planned to be operational in 2014, although the launch of the first ## satellites has been delayed.

Read More